189 research outputs found

    Representation Learning for Scale-free Networks

    Full text link
    Network embedding aims to learn the low-dimensional representations of vertexes in a network, while structure and inherent properties of the network is preserved. Existing network embedding works primarily focus on preserving the microscopic structure, such as the first- and second-order proximity of vertexes, while the macroscopic scale-free property is largely ignored. Scale-free property depicts the fact that vertex degrees follow a heavy-tailed distribution (i.e., only a few vertexes have high degrees) and is a critical property of real-world networks, such as social networks. In this paper, we study the problem of learning representations for scale-free networks. We first theoretically analyze the difficulty of embedding and reconstructing a scale-free network in the Euclidean space, by converting our problem to the sphere packing problem. Then, we propose the "degree penalty" principle for designing scale-free property preserving network embedding algorithm: punishing the proximity between high-degree vertexes. We introduce two implementations of our principle by utilizing the spectral techniques and a skip-gram model respectively. Extensive experiments on six datasets show that our algorithms are able to not only reconstruct heavy-tailed distributed degree distribution, but also outperform state-of-the-art embedding models in various network mining tasks, such as vertex classification and link prediction.Comment: 8 figures; accepted by AAAI 201

    Urban Dreams of Migrants: A Case Study of Migrant Integration in Shanghai

    Full text link
    Unprecedented human mobility has driven the rapid urbanization around the world. In China, the fraction of population dwelling in cities increased from 17.9% to 52.6% between 1978 and 2012. Such large-scale migration poses challenges for policymakers and important questions for researchers. To investigate the process of migrant integration, we employ a one-month complete dataset of telecommunication metadata in Shanghai with 54 million users and 698 million call logs. We find systematic differences between locals and migrants in their mobile communication networks and geographical locations. For instance, migrants have more diverse contacts and move around the city with a larger radius than locals after they settle down. By distinguishing new migrants (who recently moved to Shanghai) from settled migrants (who have been in Shanghai for a while), we demonstrate the integration process of new migrants in their first three weeks. Moreover, we formulate classification problems to predict whether a person is a migrant. Our classifier is able to achieve an F1-score of 0.82 when distinguishing settled migrants from locals, but it remains challenging to identify new migrants because of class imbalance. This classification setup holds promise for identifying new migrants who will successfully integrate into locals (new migrants that misclassified as locals).Comment: A modified version. The paper was accepted by AAAI 201

    The Global Convergence of a New Mixed Conjugate Gradient Method for Unconstrained Optimization

    Get PDF
    We propose and generalize a new nonlinear conjugate gradient method for unconstrained optimization. The global convergence is proved with the Wolfe line search. Numerical experiments are reported which support the theoretical analyses and show the presented methods outperforming CGDESCENT method

    ZJU ReLER Submission for EPIC-KITCHEN Challenge 2023: Semi-Supervised Video Object Segmentation

    Full text link
    The Associating Objects with Transformers (AOT) framework has exhibited exceptional performance in a wide range of complex scenarios for video object segmentation. In this study, we introduce MSDeAOT, a variant of the AOT series that incorporates transformers at multiple feature scales. Leveraging the hierarchical Gated Propagation Module (GPM), MSDeAOT efficiently propagates object masks from previous frames to the current frame using a feature scale with a stride of 16. Additionally, we employ GPM in a more refined feature scale with a stride of 8, leading to improved accuracy in detecting and tracking small objects. Through the implementation of test-time augmentations and model ensemble techniques, we achieve the top-ranking position in the EPIC-KITCHEN VISOR Semi-supervised Video Object Segmentation Challenge.Comment: Top 1 solution for EPIC-KITCHEN Challenge 2023: Semi-Supervised Video Object Segmentatio

    ZJU ReLER Submission for EPIC-KITCHEN Challenge 2023: TREK-150 Single Object Tracking

    Full text link
    The Associating Objects with Transformers (AOT) framework has exhibited exceptional performance in a wide range of complex scenarios for video object tracking and segmentation. In this study, we convert the bounding boxes to masks in reference frames with the help of the Segment Anything Model (SAM) and Alpha-Refine, and then propagate the masks to the current frame, transforming the task from Video Object Tracking (VOT) to video object segmentation (VOS). Furthermore, we introduce MSDeAOT, a variant of the AOT series that incorporates transformers at multiple feature scales. MSDeAOT efficiently propagates object masks from previous frames to the current frame using two feature scales of 16 and 8. As a testament to the effectiveness of our design, we achieved the 1st place in the EPIC-KITCHENS TREK-150 Object Tracking Challenge.Comment: Top 1 solution for EPIC-KITCHEN Challenge 2023: TREK-150 Single Object Tracking. arXiv admin note: text overlap with arXiv:2307.0201

    Time2Graph: Revisiting Time Series Modeling with Dynamic Shapelets

    Full text link
    Time series modeling has attracted extensive research efforts; however, achieving both reliable efficiency and interpretability from a unified model still remains a challenging problem. Among the literature, shapelets offer interpretable and explanatory insights in the classification tasks, while most existing works ignore the differing representative power at different time slices, as well as (more importantly) the evolution pattern of shapelets. In this paper, we propose to extract time-aware shapelets by designing a two-level timing factor. Moreover, we define and construct the shapelet evolution graph, which captures how shapelets evolve over time and can be incorporated into the time series embeddings by graph embedding algorithms. To validate whether the representations obtained in this way can be applied effectively in various scenarios, we conduct experiments based on three public time series datasets, and two real-world datasets from different domains. Experimental results clearly show the improvements achieved by our approach compared with 17 state-of-the-art baselines.Comment: An extended version with 11 pages including appendix; Accepted by AAAI'202

    Explore Synergistic Interaction Across Frames for Interactive Video Object Segmentation

    Full text link
    Interactive Video Object Segmentation (iVOS) is a challenging task that requires real-time human-computer interaction. To improve the user experience, it is important to consider the user's input habits, segmentation quality, running time and memory consumption.However, existing methods compromise user experience with single input mode and slow running speed. Specifically, these methods only allow the user to interact with one single frame, which limits the expression of the user's intent.To overcome these limitations and better align with people's usage habits, we propose a framework that can accept multiple frames simultaneously and explore synergistic interaction across frames (SIAF). Concretely, we designed the Across-Frame Interaction Module that enables users to annotate different objects freely on multiple frames. The AFI module will migrate scribble information among multiple interactive frames and generate multi-frame masks. Additionally, we employ the id-queried mechanism to process multiple objects in batches. Furthermore, for a more efficient propagation and lightweight model, we design a truncated re-propagation strategy to replace the previous multi-round fusion module, which employs an across-round memory that stores important interaction information. Our SwinB-SIAF achieves new state-of-the-art performance on DAVIS 2017 (89.6%, J&F@60). Moreover, our R50-SIAF is more than 3 faster than the state-of-the-art competitor under challenging multi-object scenarios

    A Distributed Solution for Efficient K Shortest Paths Computation over Dynamic Road Networks

    Full text link
    The problem of identifying the k-shortest paths KSPs for short in a dynamic road network is essential to many location-based services. Road networks are dynamic in the sense that the weights of the edges in the corresponding graph constantly change over time, representing evolving traffic conditions. Very often such services have to process numerous KSP queries over large road networks at the same time, thus there is a pressing need to identify distributed solutions for this problem. However, most existing approaches are designed to identify KSPs on a static graph in a sequential manner, restricting their scalability and applicability in a distributed setting. We therefore propose KSP-DG, a distributed algorithm for identifying k-shortest paths in a dynamic graph. It is based on partitioning the entire graph into smaller subgraphs, and reduces the problem of determining KSPs into the computation of partial KSPs in relevant subgraphs, which can execute in parallel on a cluster of servers. A distributed two-level index called DTLP is developed to facilitate the efficient identification of relevant subgraphs. A salient feature of DTLP is that it indexes a set of virtual paths that are insensitive to varying traffic conditions in an efficient and compact fashion, leading to very low maintenance cost in dynamic road networks. This is the first treatment of the problem of processing KSP queries over dynamic road networks. Extensive experiments conducted on real road networks confirm the superiority of our proposal over baseline methods.Comment: A shorter version of this technical report has been accepted for publication as a regular paper in TKDE. arXiv admin note: substantial text overlap with arXiv:2004.0258
    corecore